282 research outputs found

    Beyond the Mean Field Approximation for Spin Glasses

    Full text link
    We study the d-dimensional random Ising model using a Bethe-Peierls approximation in the framework of the replica method. We take into account the correct interaction only inside replicated clusters of spins. Our ansatz is that the interaction of the borders of the clusters with the external world can be described via an effective interaction among replicas. The Bethe-Peierls model is mapped into a single Ising model with a random gaussian field, whose strength (related to the effective coupling between two replicas) is determined via a self-consistency equation. This allows us to obtain analytic estimates of the internal energy and of the critical temperature in d dimensions.Comment: plane TeX file,19 pages. 3 figures may be requested to Paladin at axscaq.aquila.infn.i

    On the concept of complexity in random dynamical systems

    Full text link
    We introduce a measure of complexity in terms of the average number of bits per time unit necessary to specify the sequence generated by the system. In random dynamical system, this indicator coincides with the rate K of divergence of nearby trajectories evolving under two different noise realizations. The meaning of K is discussed in the context of the information theory, and it is shown that it can be determined from real experimental data. In presence of strong dynamical intermittency, the value of K is very different from the standard Lyapunov exponent computed considering two nearby trajectories evolving under the same randomness. However, the former is much more relevant than the latter from a physical point of view as illustrated by some numerical computations for noisy maps and sandpile models.Comment: 35 pages, LaTe

    Constrained annealing for spin glasses

    Full text link
    The quenched free energy of spin glasses is estimated by means of annealed averages where the frustration is constrained to its average value. We discuss the case of d-dimensional Ising models with random nearest neighbour coupling, and we introduce a new method to obtain constrained annealed averages without recurring to Lagrange multipliers. It requires to perform quenched averages either on small volumes in an analytic way, or on finite size strips via products of random transfer matrices. We thus give a sequence of converging lower bounds for the quenched free energy of 2d spin glasses.Comment: plane TeX file,24 pages. 6 figures may be requested to Paladin at vxscaq.aquila.infn.i

    Stochastic Resonance in Deterministic Chaotic Systems

    Full text link
    We propose a mechanism which produces periodic variations of the degree of predictability in dynamical systems. It is shown that even in the absence of noise when the control parameter changes periodically in time, below and above the threshold for the onset of chaos, stochastic resonance effects appears. As a result one has an alternation of chaotic and regular, i.e. predictable, evolutions in an almost periodic way, so that the Lyapunov exponent is positive but some time correlations do not decay.Comment: 9 Pages + 3 Figures, RevTeX 3.0, sub. J. Phys.

    Lack of self-average in weakly disordered one dimensional systems

    Full text link
    We introduce a one dimensional disordered Ising model which at zero temperature is characterized by a non-trivial, non-self-averaging, overlap probability distribution when the impurity concentration vanishes in the thermodynamic limit. The form of the distribution can be calculated analytically for any realization of disorder. For non-zero impurity concentration the distribution becomes a self-averaging delta function centered on a value which can be estimated by the product of appropriate transfer matrices.Comment: 17 pages + 5 figures, TeX dialect: Plain TeX + IOP macros (included

    Statistical Mechanics of Shell Models for 2D-Turbulence

    Full text link
    We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy.Comment: 25 pages + 9 figures, TeX dialect: RevTeX 3.

    Predictability in Systems with Many Characteristic Times: The Case of Turbulence

    Full text link
    In chaotic dynamical systems, an infinitesimal perturbation is exponentially amplified at a time-rate given by the inverse of the maximum Lyapunov exponent λ\lambda. In fully developed turbulence, λ\lambda grows as a power of the Reynolds number. This result could seem in contrast with phenomenological arguments suggesting that, as a consequence of `physical' perturbations, the predictability time is roughly given by the characteristic life-time of the large scale structures, and hence independent of the Reynolds number. We show that such a situation is present in generic systems with many degrees of freedom, since the growth of a non-infinitesimal perturbation is determined by cumulative effects of many different characteristic times and is unrelated to the maximum Lyapunov exponent. Our results are illustrated in a chain of coupled maps and in a shell model for the energy cascade in turbulence.Comment: 24 pages, 10 Postscript figures (included), RevTeX 3.0, files packed with uufile

    2d frustrated Ising model with four phases

    Full text link
    In this paper we consider a 2d random Ising system on a square lattice with nearest neighbour interactions. The disorder is short range correlated and asymmetry between the vertical and the horizontal direction is admitted. More precisely, the vertical bonds are supposed to be non random while the horizontal bonds alternate: one row of all non random horizontal bonds is followed by one row where they are independent dichotomic random variables. We solve the model using an approximate approach that replace the quenched average with an annealed average under the constraint that the number of frustrated plaquettes is keep fixed and equals that of the true system. The surprising fact is that for some choices of the parameters of the model there are three second order phase transitions separating four different phases: antiferromagnetic, glassy-like, ferromagnetic and paramagnetic.Comment: 17 pages, Plain TeX, uses Harvmac.tex, 4 ps figures, submitted to Physical Review

    Bethe-Peierls Approximation for the 2D Random Ising Model

    Full text link
    The partition function of the 2d Ising model with random nearest neighbor coupling is expressed in the dual lattice made of square plaquettes. The dual model is solved in the the mean field and in different types of Bethe-Peierls approximations, using the replica method.Comment: Plane TeX file, 21 pages, 5 figures available under request to [email protected]
    • …
    corecore